Here is update on restoring sealed battery; in short I gave up.
After breaking seal and examining internal plate status, there was no point in repair attempt.
There was crystal structure which deformed and at multiply points shortened opposite plates.
So even if I remove that crystal form, there is question; will I have enough plate material to be able to restore it in normal working condition?
I’m thinking at best to quarter capacity, but amount of work and price of chemicals equals more expensive than new one.
One another observation; while performing tests with measuring internal resistance I found that my method form Wikipedia isn’t good.
So I have to find something else for reliably test internal resistance of battery.
Next, about tests with charger, my initial setting was excellent for small batteries up to 2Ah, in range from 1.2V to 24V.
There is only need to adjust DC output voltage with duty cycle.
My first test was on 70Ah battery and after 2 days of charging voltage raises to 12.4V, so I decide to do testing on smaller battery to see result more quickly.
Next test was done on 4.5Ah battery, and after 4 hours I didn’t notice significant improvements.
Charger consumption with battery was 0.38A and I need to get more power to charge it faster.
This is new setting; on left are out pulses with only light bulb connected.
In middle are pulses for MOSFET gate and on right you can see brightness of light bulb at this setting.
Frequency is 1.2 kHz, with 65% duty cycle on, voltage output 10.6V/23.9V (DC/AC scale at multimeter), consumes 0.29A with only light bulb and 1.12A when charging battery.
With this I was able to fully charge 4.5Ah battery in about 3:30 hours.
Coil was very hot, so I rearrange ventilator from blowing out of casing to in at coil to make it more temperature stable.
Then I calculate that for charging 70Ah battery I’ll need more than two continuous days, which is too long.
So I decide to push charger to limit (and beyond).
This is more powerful setting; 1.6 kHz, 75% duty cycle on, voltage output 12.8V/28.9V (DC/AC scale), it consumes 0.34A with only light and 2.2A with battery.
On bottom left picture are out pulses when battery is charging.
As you can see HV spike is completely absorbed and charging is done only 23% in cycles during coil discharge.
Notice on bottom right how 24V light bulb is now much brighter.
At this point I was not sure if ventilator can keep coil cooled enough. Anyway I decide to push forward and see what happens.
This is end result (I remove pieces of melted plastic casing to get better picture of PCB).
In about 6 hours of charging, coil is gradually heating plastic casing and ventilator to a point of melting.
Ventilator at this point becomes working slower allowing coil to become hotter.
After that, everything gone in runaway effect, ventilator casing was deformed and stops working.
Third of casing was melted away and nearby screw fell on PCB making short connection in which MOSFET blocks in on state and starts heating until breakdown occurs.
So for more powerful version I need to make some heavy duty coil.
However I also need more current at output for faster charging.
There is also problem of HV spikes if there is no load present.
Therefore I think to make new approach, something like this:
This will solve HV spikes problem in primary side by capturing it in capacitor.
Frequency must be tuned in capacitor - coil resonation, therefore each new pulse will go with capacitor discharge and reduce collisions/current waste.
Transformer model will produce more current at output for faster charging and hopefully solve problem if no load is connected (yeah I know this won’t work, let me dream a little bit
).